How Artificial Intelligence (AI) Is Used in Game Development (2023)

AI is becoming a universal tool for game design. Despite video game artificial intelligence still being in its infancy, game companies have already started to recognize attractive benefits such as enhanced player experience and cost reduction.

Ever since the first program that played chess in the ’50s, video games have been associated with artificial intelligence. The efforts to solve the challenge of computers defeating human experts in strategy games such as chess, poker, and Go have significantly advanced AI research. In turn, this has led to enhancements in the design of new games.

In a broad sense, most video games incorporate some form of AI. Nevertheless, modern AI methods can be applied in distinct areas that help game companies realize business benefits as well. For example, through enhancing photorealistic effects, generating content, balancing in-game complexities, and providing intelligence to non-playing characters (NPCs), AI improves the overall user experience while saving game companies budget and time.

Read on to find out more about the importance and impact of AI in games, typical applications, commonly employed AI methods, the most popular games that utilize AI, the business benefits, current limitations in how AI can be applied, and the future of AI in games.

The importance and impact of AI in games

Game developers strive to deliver valuable interactive experiences to players. These experiences derive from the cumulative effects of a number of orchestrated game elements, including graphics, sounds, gameplay timing, narratives, challenges, and content that directly interacts with the players (allies, opponents, or other objects). Because of this, AI is becoming an unmatched tool that can help designers coordinate the ever-growing complexity of game dynamics.

The growing popularity of AI in games also has significant business benefits for enterprises. The gaming industry is becoming one of the most profitable sectors, with a market value predicted to reach around 314 billion USD by 2026. As a result, funding of the development of AI-based games worldwide has been steadily rising.

Today, many startups are emerging in this area. For example, latitude, a startup that develops games using AI-generated infinity storylines, raised 3.3 million USD in seed funding in January 2021. Osmo, an interactive play company, has raised 32.5 million USD in funding so far. Gosu Data Lab, another AI gaming startup based in Lithuania, has raised 5.1 million USD in funding. Gosu mainly focuses on exploring gaming data for AI purposes, helping gamers get better at playing.

Our AI development services can improve your bottom line up to 45%. See for yourself

Typical applications of AI in games

The application of AI in games is diverse; it can be used for image enhancement, automated level generation, scenarios, and stories, balancing in-game complexity, and adding intelligence to non-playing characters (NPCs).

How Artificial Intelligence (AI) Is Used in Game Development (1)

Image enhancement

At the forefront of image enhancement are the AI engineers who are making efforts to use a deep learning system that turns 3D rendered graphics into photorealistic images. Such a system has been tested on Grand Theft Auto 5. The developed neural network is capable of recreating LA and southern Californian landscapes in great detail. The most advanced image enhancement AI algorithms can convert high-quality synthetic 3D images into real-life-like depictions.

One application of image enhancement in video games is to improve the graphics of classic games. The main idea behind the algorithms proposed for this job is to take a low-resolution image and turn it into a version that looks the same but has many more pixels. This process is called “AI upscaling”.

(Video) How AI is changing the Gaming Industry in 2020 | Artificial Intelligence Training | Edureka

Game level generation

Game level generation is also known as Procedural Content Generation (PCG). These are the names for a set of methods that use advanced AI algorithms to generate large open-world environments, new game levels, and many other game assets. This is one of the most promising applications of artificial intelligence in game design. Open world or open map games include some of the most popular games to date. These games allow players to explore vast landscapes. Creating such games is very time-consuming from both the design and development perspectives. But AI algorithms can build and optimize new scenery in relation to the game’s status. For example, No Man’s Sky is an AI-based game with an infinite number of new levels generated on the fly while you play.

Scenarios and stories

AI is used to generate stories and scenarios. Most often, AI is used to create an interactive narrative. In this kind of game, users create or influence a dramatic storyline through actions or what they say. The AI programs use text analysis and generate scenarios based on previously learned storylines. AI Dungeon 2 is one of the most famous examples of this application. The game utilizes a state-of-the-art open-source text generation system built by OpenAI and trained on the Choose Your Own Adventure books.

Balancing in-game complexity

The main advantage of AI algorithms is their ability to model complex systems. Game developers are continuously trying to create more immersive and realistic games. However, modeling the real world is complex. AI algorithms can predict the future effects of gamer actions, and even model things like weather and emotions to balance in-game complexity. A real example of this application is FIFA’s ultimate team mode. FIFA automatically calculates a team chemistry score based on the personality traits of the players in a football team. Team morale oscillates from low to high based on the in-game events (losing the ball, making a well-timed pass, etc.) In this way, teams with better players can lose games against weaker teams because of their morale. In this way, AI can be used to add a layer of complexity.

Adding intelligence to non-playing characters (NPCs)

In most current games, the opponents are pre-programmed NPCs; however, AI is on the path to adding intelligence to these characters. This will make them less predictable and more enjoyable to play against. In addition, AI allows NPCs to get smarter and respond to the game conditions in novel and unique ways as the game progresses. Many gaming companies have already started working on AI-based NPCs. For example, SEED (EA) trains NPC characters by imitating the top players in games. This approach will profoundly reduce the development time of NPCs, as hard coding of their behavior is a tedious and lengthy process.

Get more insights into this blockchain battleship game powered by Echo smart contracts

AI methods used in games

Traditionally the behavior of NPCs was programmed using rule based and finite state machines. The development using these techniques involved programming many conditionals that gave NPCs deterministic behaviors. To reduce the development effort while introducing a degree of unpredictability in games, developers used fuzzy logic. One of the first uses of AI in games programming was through so-called A* pathfinding algorithms that define the behavior of NPCs and their exploration of open worlds. Other techniques include scripting, expert systems, and artificial life (A-life) approaches.

Many popular games such as Black & White, Battlecruiser 3000AD, Creatures, Dirt Track Racing, Fields of Battle, and Heavy Gear employed non deterministic methods such as decision trees, (deep) neural networks, genetic algorithms, and reinforcement learning methods. Let’s explore these techniques in detail.

Decision trees

Decision trees (DTs) are supervised learning models that can be trained to perform classification and regression. They are one of the most basic machine learning methods for game design, and can enable the value of a variable of interest to be predicted through learning simple decision rules inferred from the data features.

Decision trees are pretty simple to understand, and the results can be easily interpreted. Tree visualization techniques are also very advanced. The developed models are known as white box models and can be validated using various statistical tests.

In artificial intelligence game design, DTs are used to describe choices and consequences (predictions of actions). Most modern games use DTs, primarily narrative-based games. In one such use, decision trees can provide players with insights into how the future will look depending on their choices. For example, in Star Wars Jedi: Fallen Order, decision trees provide hints regarding the past and future of the main character if certain circumstances were to occur.

(Deep) neural networks

Artificial neural networks (NNs) are structures akin to human brains that can learn various features from training data. Given a large set of data, NNs are capable of modeling very complex real-world and game scenarios. NNs overcome some of the shortcomings of classic AI techniques in game agent design. Furthermore, NNs are self-adaptive and adapt well to game environments that change in real-time.

(Video) How AI will completely change video games

NN-based game agents can learn in two ways. Either they are trained before being deployed in a game (offline), or the learning process can be applied in real time during the gameplay (online). Online training allows for the creation of game agents that continuously improve while the game is being played.

NN-based agents can quickly adapt to the changing tactics of human players or other NPCs, and can make sure the game remains challenging even during extended gameplay.

Lately, Deep NN (deep learning) has become a more popular choice for game agent design. Deep learning in games utilizes multiple layers of neural networks to “progressively” extract features from the input data. Due to its layered approach and increased architectural complexity, deep NN can achieve better results when controlling one or several game agents. These agents can either be NPCs or the game environment itself.

Genetic algorithms

In the most basic terms, a genetic algorithm (GA) is a higher-level procedure, a heuristic, inspired by the theory of natural evolution. The genetic algorithm mimics the process of natural selection, where the fittest candidates are chosen to produce offspring of the next generation.

GAs are used for various optimization tasks. When compared to different optimization techniques, GAs are capable of delivering excellent results for multicriteria optimizations. In the past, GAs found their place in board games that employ various search techniques when seeking the next best moves. The most recent applications of GAs to NPCs allow adaptation of these agents to defend against effective but repetitive tactics that human players may employ. The application of GAs leads to a more realistic game experience, where human players or other AI agents cannot find loopholes and dominate the game with repeated steps that always lead to success. The end benefit of GAs is extended playability.

Reinforcement learning

Reinforcement learning (RL) is a machine learning method that is based on learning from trial and error. During training, the model is allowed to play out scenarios and learn from whether things ended well or not so well.

Reinforcement learning is effective when designing NPCs to make decisions in dynamic and unknown environments. Reinforcement learning has been used in games for a long time. Therefore, games are rich domains for testing reinforcement learning algorithms. At the same time, some of the best computer players use reinforcement learning (AlphaGo). However, the primary reinforcement learning algorithms are not sufficient for high-level game playing, so these methods are often used with other AI methods such as deep learning.

Take a look at this AI-powered retina disease diagnosis tool

Overview of popular AI-based games

There are many examples of AI applications in game design. Each of these AIs has a different level of sophistication. Here are some examples of the most highly regarded AI in the gaming industry.

How Artificial Intelligence (AI) Is Used in Game Development (2)

F.E.A.R.

F.E.A.R. is a first-person shooter and psychological horror game in which the main player engages with robots, various creatures, and cloned supersoldiers. The game creators have developed AI that generates context-sensitive behaviors. For example, so-called Replicas can utilize the game environment to their advantage. Replicas can overturn tables to provide cover, open doors, crash through windows, or even alert the rest of their peers to the players’ actions. Additionally, game AI can perform a flank attack, put out a fire, and throw grenades to force a player out of cover.

(Video) AI Will Change Game Development

StarCraft II

Starcraft II is a real-time strategy game where players take a seat in a 1 vs. 1, 2 vs. 2, or 3 vs. 3 battle arena. The main aim of the players is to destroy their opponents’ bases. This is done by creating units that are effective at defeating the opponents’ units. Players can choose to play against various levels of AI from easy to Cheater 3. Starcraft’s AI is capable of cheating to defeat human players by processing information about human player bases. Starcraft II as a game has also become a popular environment for AI research. In a joint push, Blizzard and DeepMind have released a public Starcraft II environment where scientists and enthusiasts can test various AI algorithms.

Alien: Isolation

Alien: Isolation is based on the Alien sci-fi horror movie series. The setting of this survival game is 15 years after the events of the movie, when Amanda Ripley, the daughter of Ellen Ripley (main character of the movie), investigates her mother’s disappearance. Game developers utilize AI to measure the amount of stress the player is experiencing. AI measures three critical elements at all times: if the Xenomorph (Alien) can be seen by the player, distance between the Xenomorph and the player, and the proximity of the Xenomorph to the motion tracker and how fast it can reach the player.

AI uses these three factors to determine the stress level that the player experiences. If the stress level is too low, it instructs the Xenomorph to move to a specific location closer to the player. If the level is too high, it moves the Xenomorph away from the player. In this way, AI creates ups and downs, a true characteristic of good horror.

Forza Horizon Series

Forza Horizon is a simulation racing game that emulates real-world racing car performance and handling characteristics. Forza employs a learning neural network in its design to control non-human drivers. The developed AI system can observe human drivers and imitate their style of driving. Under the name Drivatar, this AI system has recently been connected to Microsoft’s cloud services, from which it gets driving data from a vast number of human racers. This data is used to create AI systems that mimic other players from around the world, not just their strengths but also their weaknesses, to provide unpredictable experiences for the competing human drivers.

The business benefits of using AI in games

AI brings a number of business benefits for game development companies. Companies that use AI in their games can save budget and time, provide a better user experience, and streamline their development processes.

How Artificial Intelligence (AI) Is Used in Game Development (3)

Save budget and time

The gaming industry is one of those industries where a lot of budget and time are invested in development, i.e. while developing a game. In addition, there is always a risk that the audience may not accept the game. To avoid this, before a game is released to the market, it undergoes stringent quality assurance procedures and focus-group testing. As a result, a single game development process for a sophisticated game can sometimes take years.

AI is an indispensable tool allowing game companies to drastically reduce time and development budgets. When used for automated level generation, AI can save thousands of hours of development work. Furthermore, by employing data-driven techniques instead of hard-coded rules, AI eliminates the manual labor that would need to be invested otherwise. As a result, delivery costs can be reduced dramatically, meaning that game companies can hire better game developers to finish the job. This advantage is becoming increasingly important in a highly competitive job market for developers.

Better user experience

In the gaming business, the end-user experience is a critical success metric. User experience is an integrative component of the gaming business that determines sales volume, loyalty levels, marketing success, and many other business factors.

AI can make a game appear more sophisticated and realistic, sparking gamers’ interest in playing and likelihood to recommend the game to others. For example, AI voice intelligence helps players understand their in-game actions better. It adds another level to the overall user experience by smartly engaging players’ senses.

(Video) How "Smart" AI (Basically) Works in Games (Goal Oriented Action Planning)

Another aspect of user experience that AI is enhancing is adaptation. For example, AI can make use of large amounts of personalized and privacy-protected data to create scenarios that certain types of gamers will enjoy the most.

Streamlined processes

The streamlined process has fewer errors and delays. Game AI assists developers by automatically generating content such as landscapes, levels, items, quests, and music. Once the AI development process is set in stone, human errors are removed from the picture. Delays in development can also be eliminated due to AI being very efficient at dedicated tasks.

Limitations in the use of AI in games

The applications of artificial intelligence in games have certain limitations. It is, for example, difficult to design realistic NPC enemies that can automatically produce an engaging level for each individual. AI-based NPC enemies are usually intended to respond in the best way to a player’s moves. Such components are unbeatable but also predictable and quickly cease being fun.

How Artificial Intelligence (AI) Is Used in Game Development (4)

Due to the ability of AI to predict possible future outcomes, AI can quickly become unbeatable. A famous example of such a scenario is a Tic-Tac-Toe game where AI implements a minimax algorithm that can lead to drawn games regardless of which move the human makes.

AI is often allowed to cheat when trying to defeat humans. The need to cheat, however, reveals the limits to achievable artificial intelligence. In games that require strategy and creativity, humans are generally able to beat AI. Since game artificial intelligence can still not learn from its own mistakes, the use of AI in such games is minimal.

Another limitation of artificial intelligence that does not only apply to gaming is the lack of context outside the training data. Again, this leads to ethical considerations and biases.

These limitations affect only a small set of game AI applications. The AI field is undergoing continuous improvement, and it’s likely that very soon these challenges will be successfully tackled.

Future of artificial intelligence games

The impact of AI in the gaming industry is expected to grow even further with new possibilities such as autonomous character evolution, learning, and adaptation. The main idea is to design games with agents that are not static but continually evolve as the game is played. Future NPCs will be able to evolve during gameplay, and it will become more difficult for a player to predict their behaviors. With increasing gameplay time, AI-backed games will become more advanced and challenging for players to predict. As a result, the play-life of the games will be profoundly extended. AI techniques enabling these opportunities will also grow in sophistication.

AI that utilizes machine learning will need a vast amount of training data to be successful. Currently, there is a general lack of training data. However, as more companies realize the importance of AI and data, this limitation will fall away.

(Video) AI and Game Design | The History of Artificial Intelligence In Video Games

The ultimate goal of AI in games is to offer infinite combinations of stories, landscapes, and levels as well as realistic NPCs and endless customization.

The development of AI for gaming requires deep knowledge and practical experience. We at PixelPlex have both; our AI development services span both custom from-scratch engineering and existing solution revamping. Drop us a line and let’s discuss your trailblazing project today!

FAQs

How AI is used in game development? ›

In video games, artificial intelligence (AI) is used to generate responsive, adaptive or intelligent behaviors primarily in non-player characters (NPCs) similar to human-like intelligence. Artificial intelligence has been an integral part of video games since their inception in the 1950s.

Why is AI used in games? ›

The main objective of utilizing AI in gaming is to deliver a realistic gaming experience for players to battle against each other on a virtual platform. In addition, AI in gaming also helps to increase the player's interest and satisfaction over a long period of time.

Is AI needed in game development? ›

AI has played a major role in pushing games to where they are currently. Game studios use AI in multiple ways to enrich their releases, and its use is only set to grow in the future. Here are 5 ways AI is changing game development.

What are types of games in AI explain with example? ›

Examples are Chess, Checkers, Go, etc.
...
Types of Games in AI:
DeterministicChance Moves
Perfect informationChess, Checkers, go, OthelloBackgammon, monopoly
Imperfect informationBattleships, blind, tic-tac-toeBridge, poker, scrabble, nuclear war

What kind of AI is used in games? ›

Deterministic AI techniques are the most widely used AI in gaming techniques. Deterministic behaviour or performance is specified and is very predictable. There isn't any element of uncertainty involved in these techniques. They are rather quick and easy to implement, understand, test, and debug.

What is the future of AI in gaming? ›

The Future Of AI In Gaming

Looking at the future of AI and gaming, AI will keep on empowering the creation of online games, offering more interactivity, infinite combinations of stories and landscapes, high-level graphics and visuals, more realistic NPCs and customized experiences.

Can a AI make a game? ›

Researchers have used an AI system to create a game that works like a cross between Super Mario and Brick Breaker. Matthew Guzdial and Mike Cook are responsible for 'Angelina,' a software tool which relies on genetic algorithms to create various small web games.

Do all games have AI? ›

Nearly all games use AI to some extent or another. Without it, it would be hard for a game to provide an immersive experience to the player. The goal of AI is to immerse the player as much as possible, by giving the characters in the game a lifelike quality, even if the game itself is set in a fantasy world.

What is AI used for? ›

Artificial intelligence (AI) makes it possible for machines to learn from experience, adjust to new inputs and perform human-like tasks. Most AI examples that you hear about today – from chess-playing computers to self-driving cars – rely heavily on deep learning and natural language processing.

Can AI engineer make games? ›

Of course, playing a game and learning to counter the real-world problem eventually is something AI has always been trained for. AI has also been playing a massive role in creating video games and making it more tailored to players' preferences.

Can AI beat humans at games? ›

Artificial intelligence continues to best humans at games, this time the classic card game Bridge. Researchers from the French A.I. research firm NukkAI held a competition last week in Paris in which the startup's A.I. defeated some of the world's top Bridge players in a tournament.

What is game tree in artificial intelligence? ›

It is a graph consisting of nodes and edges that represent all the possible legal moves of a (board) game. The nodes are positions in a game and the edges are moves. Learn more in: Board Games AI.

What is an example of a game? ›

Games of skill include games of physical skill, such as wrestling, tug of war, hopscotch, target shooting, and stake, and games of mental skill such as checkers and chess. Games of strategy include checkers, chess, Go, arimaa, and tic-tac-toe, and often require special equipment to play them.

What is intelligence artificial intelligence made of? ›

What is artificial intelligence (AI)? Artificial intelligence is the simulation of human intelligence processes by machines, especially computer systems. Specific applications of AI include expert systems, natural language processing, speech recognition and machine vision.

How AI is changing the game industry? ›

Developers can also turn to AI for insights on how new games should be developed. AI can be used to identify development trends in gaming and analyze the competition, new play techniques and players' adaptations to the game. This helps inform the methodology and technique of game development itself.

In which of the games is AI technology being used to improve player performance? ›

NBA teams have implemented optical tracking technology, like SportVU, to track the finer details during a game to better their playing style. Softwares like SportVU provide pattern recognition capabilities to predict how the game is played. SportVU can track a player's movement 25 times a second.

Which type of AI is mostly used? ›

Artificial Narrow Intelligence (ANI)

ANI is the most commonly applied type of AI in the current era. As you go deeper to know what is ANI, we can see that this type of Artificial Intelligence system can perform one or two tasks. It uses the training data and the learning experiences from the previous incidents.

What is the impact of AI in gaming world? ›

NPCs (non-player characters)

Using AI for NPCs makes a game more interactive and opens up new avenues for interaction between players and non-players. At the end of the day, games aim to give a more immersive experience and a human-like NPC achieves exactly that.

What is the future of game development? ›

Top Game Development Trends in 2022

Game developers predict streaming will become the dominant platform by 2025. Remote teams across time zones are the new normal. Most game dev teams are doing at least some of their development in the cloud. Creatives are a larger part of the game development process than ever before.

How has AI changed the game world 10? ›

How has AI changed the gaming world? AI has changed the world of gaming by making the game more intelligent by providing them the ability to learn using machine learning algorithms. Games these days try to understand human patterns and give responses on the basis of it and also give new difficulty levels.

Does AI use game theory? ›

In the context of artificial intelligence(AI) and deep learning systems, game theory is essential to enable some of the key capabilities required in multi-agent environments in which different AI programs need to interact or compete in order to accomplish a goal.

Can strategy games use AI? ›

AI has notably been applied to board games, such as chess, Scrabble, and backgammon, creating compe- tition that has sped the development of many heuristic- based search techniques (Schaeffer 2001).

What technology is used to make video games? ›

C++ has been the primary game development language for many years, especially for AAA games. You can create games in C++ for various operating systems, including Windows, Mac, Linux, Android, and iOS. You need a game engine to build games, and both 2D and 3D game engines frequently employ C++.

Why AI is so important? ›

Today, the amount of data that is generated, by both humans and machines, far outpaces humans' ability to absorb, interpret, and make complex decisions based on that data. Artificial intelligence forms the basis for all computer learning and is the future of all complex decision making.

Why AI is important in simple words? ›

Simply put, AI allows organizations to make better decisions, improving core business processes by increasing both the speed and accuracy of strategic decision-making processes.

What games make intelligent? ›

Lumosity helps you make IQ and cognitive exercises become a normal part of your everyday life. Right on its website, it breaks down the essence of their goal: “Take the Fit Test to get your baseline scores on 3 games. See how you stack up against others your age and take the first step in your training.”

Are bots in games AI? ›

In video games, a bot is a type of artificial intelligence (AI)–based expert system software that plays a video game in the place of a human.

Can AI write a play? ›

AI: When a Robot Writes a Play (in Czech: AI: Když robot píše hru) is an experimental theatre play, where 90% of its script was automatically generated by artificial intelligence (the GPT-2 language model). The play is in Czech language, but an English version of the script also exists.

Which language is best for AI? ›

Python is the best programming language for AI. It's easy to learn and has a large community of developers. Java is also a good choice, but it's more challenging to learn. Other popular AI programming languages include Julia, Haskell, Lisp, R, JavaScript, C++, Prolog, and Scala.

Can AI be used for evil? ›

AI isn't inherently moral -- it can be used for evil just as well as for good. And while it may appear that AI provides an advantage for the good guys in security now, the pendulum may swing when the bad guys really embrace it to do things like unleashing malware infections that can learn from their hosts.

Is AI safe for humans? ›

Safety and security risks

AI applications that are in physical contact with humans or integrated into the human body could pose safety risks as they may be poorly designed, misused or hacked. Poorly regulated use of AI in weapons could lead to loss of human control over dangerous weapons.

When was an AI first able to play a game against a human? ›

1997: IBM invented the Deep Blue machine which had learnt to play the game of Chess and defeated Garry Kasparov, the world champion of those times. This was the first time that an AI had defeated a world champion in a match play. Garry Kasparov playing chess against the IBM Deep Blue.

Which algorithm is used in the game to make decision? ›

10) Which algorithm is used in the Game tree to make decisions of Win/Lose? Explanation: A game tree is a directed graph whose nodes represent the positions in Game and edges represent the moves. To make any decision, the game tree uses the Min/Max algorithm.

What is game theory programming? ›

Algorithmic game theory (AGT) is an area in the intersection of game theory and computer science, with the objective of understanding and design of algorithms in strategic environments.

How many types of agents are there in artificial intelligence? ›

There are five different types of intelligent agents used in AI. They are defined by their range of capabilities and intelligence level: Reflex Agents: These agents work here and now and ignore the past.

What is the full meaning of game? ›

A game is an activity or sport usually involving skill, knowledge, or chance, in which you follow fixed rules and try to win against an opponent or to solve a puzzle. ... the wonderful game of football.

Why is game called Game? ›

It does indeed come from the fact hunting animals is a game or sport. From the Middle English 'gamen' which meant sport.

What are the 4 types of games? ›

Video Game Genres: Everything You Need to Know
  • Sandbox.
  • Real-time strategy (RTS)
  • Shooters (FPS and TPS)
  • Multiplayer online battle arena (MOBA)
  • Role-playing (RPG, ARPG, and More)
  • Simulation and sports.
  • Puzzlers and party games.
  • Action-adventure.
23 Jul 2020

Who created artificial intelligence? ›

One of the greatest innovators in the field was John McCarthy, widely recognized as the father of Artificial Intelligence due to his astounding contribution in the field of Computer Science and AI.

Is AI an intelligent system? ›

However, an intelligent system is not the same thing as AI, although the terms are sometimes used interchangeably. With AI, computers and other machines attempt to simulate human intelligence, but its presence does not automatically imply an intelligent system.

What is artificial intelligence AI and how does it work? ›

AI systems work by combining large sets of data with intelligent, iterative processing algorithms to learn from patterns and features in the data that they analyze. Each time an AI system runs a round of data processing, it tests and measures its own performance and develops additional expertise.

Videos

1. Using AI for Game Design!
(Jonas Tyroller)
2. How Does VIDEO GAME AI Work?
(gameranx)
3. This Game Was Made Using A.I.
(DevBanana)
4. Behaviour Trees: The Cornerstone of Modern Game AI | AI 101
(AI and Games)
5. What Makes Good AI?
(Game Maker's Toolkit)
6. Machine Learning for Game Developers (Google I/O'19)
(TensorFlow)
Top Articles
Latest Posts
Article information

Author: Sen. Emmett Berge

Last Updated: 12/12/2022

Views: 6322

Rating: 5 / 5 (80 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Sen. Emmett Berge

Birthday: 1993-06-17

Address: 787 Elvis Divide, Port Brice, OH 24507-6802

Phone: +9779049645255

Job: Senior Healthcare Specialist

Hobby: Cycling, Model building, Kitesurfing, Origami, Lapidary, Dance, Basketball

Introduction: My name is Sen. Emmett Berge, I am a funny, vast, charming, courageous, enthusiastic, jolly, famous person who loves writing and wants to share my knowledge and understanding with you.